5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема ламповых часов на газоразрядных индикаторах

Изделие можно разделить на следующие функциональные блоки:

  • Блок высокого напряжения.
  • Блок индикации.
  • Счетчик времени.
  • Блок подсветки.

Давайте разберем каждый из них более подробно.

Блок высокого напряжения для часов на газоразрядных индикаторах

Чтобы внутри лампы засветилась цифра, нужно подать на нее напряжение. Особенность газоразрядных ламп в том, что напряжение нужно довольно высокое, порядка 200 Вольт. Ток же для лампы, наоборот, должен быть очень маленький.

Где же взять подобное напряжение? Первое что приходит на ум — сетевая розетка. Да, можно воспользоваться выпрямленным сетевым напряжением. Схема будет выглядеть следующим образом:

Недостатки данной схемы очевидны. Это отсутствие гальванической развязки, нет какой-либо безопасности и защиты схемы вообще. Таким образом лучше проверять лампы на работоспособность, соблюдая при этом максимальную осторожность.

Для изготовления часов на газоразрядных индикаторах своими руками идём другим путем — повышаем безопасное напряжение до нужного уровня с помощью DC-DC преобразователя. Если говорить совсем кратко, подобный преобразователь работает по принципу качелей. Мы ведь можем придать качелям достаточно большое ускорение, прикладывая легкое усилие руки? Также и DC-DC преобразователь: малое напряжение раскачиваем до высокого.

Блок индикации

Следующий функциональный блок — индикация. Представляет собой лампы, у которых катоды соединены попарно, а аноды выведены на оптопары или транзисторные ключи. Обычно в часах применяется динамическая индикация в целях экономия места на печатной плате, миниатюризации схемы и упрощения разводки платы.

Счетчик времени

Следующий блок — счетчик времени. Проще всего его сделать на специализированной микросхеме DS1307

Она обеспечивает отличную точность времени. Благодаря ей часы сохраняют правильное время и дату, несмотря на длительное отключение питания. Производитель обещает до 10 лет (!) автономной работы от круглой батарейки CR2032.

Вот типичная схема подключения микросхемы DS1307:

Есть также подобные микросхемы, которые выпускают множество фирм по изготовлению радиокомпонентов. Они могут обеспечивать особую точность хода времени, но стоят дороже, а потому их применение в бытовых часах не совсем целесообразно.

Блок подсветки

Это самая простая часть часов, она ставится по желанию. Блок подсветки — это всего лишь светодиоды (одноцветные или RGB) под каждой лампой, которые обеспечивают фоновую подсветку. Если выбрать RGB, то цвет подсветки можно выбрать какой угодно или вообще сделать его плавно меняющимся. В таком случае необходим соответствующий контроллер. Чаще всего эту функцию возлагают на тот же микроконтроллер, который считает время, но для упрощения программирования можно поставить дополнительный.

Читать еще:  Ветрогенератор на асинхронном двигателе своими руками

Ну а теперь несколько фотографий достаточно сложного проекта часов. В нем использованы два микроконтроллера PIC16F628 для управления временем и лампами и один контроллер PIC12F692 для управления RGB подсветкой.

Бирюзовый цвет подсветки:

А теперь зеленый:

Все эти цвета настраиваются одной кнопкой. Выбрать можно какой угодно. RGB диоды способны выдать любой цвет.

↑ Схема новых часов на PIC16F628A

Основа схемы строится на микроконтроллере PIC16F628A, который отдаёт сигналы на дешифратор К155ИД1 и управляет анодными ключами.

Питается схема от одного источника +12 В. Стабилизатор типа LM78L05 выдаёт +5 В для питания микросхем. Высокое напряжение, необходимое для питания газоразрядных индикаторов, получил от инвертора на микросхеме MC3403. Подстройка выходного напряжения производится делителем, включенным в обратную связь.
Недостаток подобной схемы инвертора в отсутствии буферного ключа в цепи полевого транзистора. Общее токопотребление схемы инвертора составляет 230 мА.
Неоспоримый плюс – подстройка выходного напряжения, и как следствие регулировка яркости свечения индикаторов.

Прошивка реализует мою основную потребность – подстройку константы, влияющую на ход часов без использования прецизионных кварцевых резонаторов. Приятным бонусом оказалась функция будильника.

Этапы сборки часов

Для начала надо понять принцип работы индикаторных элементов ИН-14, практически это неоновые лампочки с группой катодов в виде цифр. В зависимости от подачи питания светится тот или иной катод поочередно, применяется принцип лампы накаливания с газоразрядным процессом.

Конструкция и основные параметры газоразрядного индикатора ИН-14

Ресурс работы таких индикаторов огромный, потому что нет длительной и большой нагрузки на один катод. Для полноценной подсветки необходимо напряжение не менее 100 В, поэтому начнем проектирование с источника питания.

Блок питания

Вариант с трансформатором, на вторичной обмотке которого будет 170 или 180 В, исключаем сразу по причине больших габаритов и веса. Подбирать железо, провода и мотать самостоятельно – дело неблагодарное и утомительное. Практичнее применить преобразователь напряжения на микросхеме MC34063, имеющий малые габариты, вес и стабильные параметры.

Схема блока питания на базе преобразователя напряжения MC34063

Все элементы монтируются на печатную плату, после сборки в большинстве случаев настройки не требуется, с 10–12 В преобразователь дает 175–180 В. Как видно, трансформатор в схеме присутствует, но очень маленький и легкодоступный для быстрого самостоятельного изготовления, такой можно купить в торговых сетях. На выходе вторичной обмотки 9–12 В переменного тока приходят на диодный мост (выпрямитель). Линейный стабилизатор LM7805 предназначен для питания электронных элементов часов.

Читать еще:  Как сделать тайник из самореза своими руками

Схема для включения ламп

Эта схема решает проблему согласования управляющего напряжения на микросхеме 5 В и управляемого напряжения питания анодов. Положительный потенциал 180 В подается на анод, а отрицательный – на катоды соответствующих цифр.

Схема управления подключением анодов лампы

Включение катодов производится схемой на базе старой микросхемы К155ИД1, которая запитывается от напряжения 5 В, что в нашем случае очень удачно. Микросхемы 155-й серии сняты с производства, но не являются дефицитом, их легко можно купить в торговых сетях и на радиорынках. Чтобы не паять микросхему к каждой лампе, схема управления катодами делается по динамическому принципу.

Схема с элементами управления анодами и катодами ламп

Теперь блок питания, схему управления катодами и анодами надо подключить к процессору часов DS1307, для согласования идеально подходит микроконтроллер Mega8.

Часы на газоразрядных индикаторах

В последнее время очень популярны часы на газоразрядных индикаторах. Эти часы множеству людей дарят теплый свет своих ламп, создают уют в доме и непередаваемое ощущение дыхания прошлого. Давайте же в этой статье разберемся, из чего же сделаны такие часы и как они работают. Сразу скажу, что это статья обзорная, поэтому многие непонятные места будут рассмотрены в следующих статьях более подробно.

Часы можно разделить на следующие функциональные блоки:

Давайте разберем каждый из них более подробно.

Блок высокого напряжения

Для того, чтобы внутри лампы засветилась цифра, нам нужно подать на нее напряжение. Особенность газоразрядных ламп в том, что напряжение нужно довольно высокое, порядка около 200 Вольт постоянного напряжения. Ток же для лампы, наоборот, должен быть очень маленький.

Где же взять подобное напряжение? Первое что приходит на ум – сетевая розетка. Да, можно воспользоваться выпрямленным сетевым напряжением. Схема будет выглядеть следующим образом:

Недостатки данной схемы очевидны. Это отсутствие гальванической развязки, нет какой-либо безопасности и защиты схемы вообще. Таким образом лучше проверять лампы на работоспособность, соблюдая при этом максимальную осторожность.

В часах конструкторы пошли другим путем, повысив безопасное напряжение до нужного уровня с помощью DC-DC преобразователя. Если говорить совсем кратко, подобный преобразователь работает по принципу качелей. Мы ведь можем прикладывая легкое усилие руки к качелям придать им достаточно большое ускорение, так ведь? Так же и DC-DC преобразователь: малое напряжение раскачиваем до высокого.

Приведу одну из наиболее распространенных схем преобразователей (кликните для увеличения, схема откроется в новом окне)

Схема с так называемым полудрайвером полевого транзистора. Обеспечивает достаточно большую мощность, чтобы питать шесть ламп, при этом не нагреваясь как утюг.

Читать еще:  Осваиваем техники лепки из полимерной глины — колбаска (кейн) «овечка»

Блок индикации

Следующий функциональный блок – индикация. Представляет из себя лампы, у которых катоды соединены попарно, а аноды выведены на оптопары или транзисторные ключи. Обычно в часах применяется динамическая индикация в целях экономия места на печатной плате, миниатюризации схемы и упрощения разводки платы

Счетчик времени

Следующий блок – счетчик времени. Проще всего это сделать на специализированной микросхеме DS1307

Она обеспечивает отличную точность времени. Благодаря этой микросхеме, часы сохраняют правильное время и дату, не смотря на длительное отключение питания. Производитель обещает до 10 лет (!) автономной работы от круглой батарейки CR2032.

Вот типичная схема подключения микросхемы DS1307:

Есть также подобные микросхемы, которые выпускают множество фирм по изготовлению радиокомпонентов. Эти микросхемы могут обеспечивать особую точность хода времени, но они будут дороже. Их применение, как мне кажется, в бытовых часах не целесообразно.

Блок подсветки

Блок подсветки самая простая часть часов. Она ставится по желанию. Это всего лишь светодиоды под каждой лампой, которые обеспечивают фоновую подсветку. Это могут быть одноцветные светодиоды, или RGB светодиоды. В последнем случае цвет подсветки можно выбрать какой угодно или вообще сделать его плавно меняющимся. В случае RGB необходим соответствующий контроллер. Чаще всего этим занимается тот же микроконтроллер, который считает время, но для упрощения программирования можно поставить дополнительный.

Ну а теперь несколько фотографий достаточно сложного проекта часов. В нем использованы два микроконтроллера PIC16F628 для управления временем и лампами и один контроллер PIC12F692 для управления RGB подсветкой.

Бирюзовый цвет подсветки:

А теперь зеленый:

Все эти цвета настраиваются одной кнопкой. Выбрать можно какой угодно. RGB диоды способны выдать любой цвет.

А это кусочек высоковольтного преобразователя. Ниже на фото полевой транзистор, сверхбыстрый диод и накопительный конденсатор DC-DC преобразователя

Этот же преобразователь, вид снизу. Применен SMD дроссель и SMD версия микросхемы MC34063. На фото еще не смыты остатки флюса.

А это упрощенный четырехламповый вариант часиков. Так же с RGB подсветкой

Ну а это уже классика строения часов на газоразрядных лампах Sunny Clock, статическая подсветка и немного не обычный способ управления лампами с помощью пары дешифраторов К155ИД1

В следующей статье поговорим более подробно о DC-DC преобразователях и получения высокого напряжения. Так же подробно разберем процесс сборки такого преобразователя и запустим от него лампу.

Всем спасибо, с вами был El Kotto. Вступайте в группу в контакте Газоразрядные лампы (Nixie Tube), а также задавайте вопросы лично мне ElKotto, если нужны какие-то детальные подробности или помощь 😉

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector