0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулируемый миниатюрный DC/DC-преобразователь: получаем из USB любое напряжение от 1 до 24 В

Регулируемый миниатюрный DC/DC-преобразователь: получаем из USB любое напряжение от 1 до 24 В

Содержание

  • Вступление
  • Внешний вид, конструкция и схемотехника DC-DC преобразователя
  • Технические испытания DC-DC преобразователя
  • Предельные режимы работы преобразователя и защита от короткого замыкания
  • КПД преобразователя
  • Итоги и выводы
Вступление

Когда в радиолюбительском или даже профессиональном арсенале требуется регулируемый источник питания невысокой мощности, то в его качестве может выступать DC-DC преобразователь, питаемый от 5-Вольтового телефонного зарядного устройства или даже от USB-порта компьютера.

Это тем более интересно, что телефонных зарядок, от которых можно запитать такой преобразователь, в каждом доме скопилось чуть более, чем гуталина на гуталиновой фабрике. 🙂

Представленный в этом обзоре DC-DC преобразователь имеет встроенный вольтметр и позволяет получить из стандартных 5 Вольт любое напряжение от 1 до 24 Вольт (и даже чуть более, как покажет тест).

(изображение со страницы продавца на Алиэкспресс)

Основные технические параметры DC-DC преобразователя

Входное напряжение5 В
Выходное напряжение1 — 24 В
Выходная мощность3 Вт (макс.)
КПД94%
Потребляемый ток холостого хода30 мА
Габариты70*26*22 мм

Характеристики взяты со страницы продавца; некоторые из них по ходу обзора придётся поправлять, в том числе и в лучшую сторону, как ни странно.

Цвет индикатора напряжения может быть красным или зелёным (по выбору потребителя).

Цена преобразователя на момент обзора — около 250 российских рублей ($3.5). Проверить актуальную цену или приобрести устройство можно здесь.

Внешний вид, конструкция и схемотехника DC-DC преобразователя

Преобразователь изготовлен в виде платы с USB-разъёмом, установленной в корпусе из прозрачного голубого пластика:

Прозрачность и гламурный цвет корпуса производят очень приятное впечатление. Хотя, на самом деле, корпус здесь сделан прозрачным не для красоты, а с функциональной целью: чтобы были видны показания встроенного вольтметра.

Корпус — неразборный, его половинки склеены «насмерть».

Вблизи выходных клемм на корпусе имеется оребрение, сделанное, видимо, чтобы корпус не скользил в руке. Но это оребрение оказалось не при деле: удобнее брать в руки устройство ближе к разъёму USB.

На обратной стороне обозначено функциональное назначение изделия:

Кроме того, здесь указана полярность выходных клемм и назначение расположенного с лицевой стороны многооборотного переменного резистора.

Через прозрачный корпус можно более-менее разобраться, как устроен преобразователь.

За оребрением корпуса (на его правой стороне) скрывается маленькая 6-ногая микросхема преобразователя — его главная деталь. На ней проставлена маркировка B6289M. По всей видимости, это — один из клонов популярной микросхемы для повышающих преобразователей MT3608.

Но в данном случае наш преобразователь в целом — повышающе-понижающий. Судя по наличию двух дросселей, здесь применена схема SEPIC, которая и позволяет превратить повышающий преобразователь в повышающе-понижающий.

В качестве выпрямительного диода использован диод Шоттки SS34, имеющий малую величину прямого падения напряжения.

Микросхема имеет встроенный тактовый генератор на частоту 1.2 МГц.

За измерение напряжения и индикацию отвечает «многоногая» микросхема NUVOTON N76E003AT20. Это — аналого-цифровой процессор с 12-битным АЦП. В данном случае этот процессор запрограмирован на роль вольтметра.

Между индикатором и разъёмом USB расположен элемент, обозначенный F1. Это — предохранитель (FUSE), при штатной работе устройства он не должен срабатывать. Но производитель всё-таки подстраховался на всякий случай. Кроме того, производить ещё и настоятельно рекомендует не допускать коротких замыканий.

Наконец, за регулировку напряжения отвечает голубой переменный резистор с ребристой латунной ручкой. При её вращении главное — не прикладывать излишнюю силу, когда она дошла до конечного положения.

Для установки напряжения с точностью 0.1 В вращать ручку надо очень медленно и плавно с того момента, когда напряжение начинает приближаться к требуемому значению. В принципе, миссия — выполнима.

Технические испытания DC-DC преобразователя

Первым делом проверяем реальные пределы регулировки напряжения и точность его измерения встроенным вольтметром.

Устанавливаем положение максимального напряжения:

Итого, по показаниям мультиметра напряжение составило 27.1 В, а по показаниям вольтметра преобразователя 25.9 В. Показаниям мультиметра при этом доверяем больше; ибо это — какой-никакой, а измерительный прибор всё-таки!

Погрешность встроенного вольтметра составила 4.4%. Это — не идеально, но терпимо. При установке напряжения по встроенному вольтметру просто можно учитывать этот факт «в уме».

Теперь устанавливаем минимальное напряжение:

Итого, по показаниям мультиметра напряжение составило 0.61 В, а по показаниям вольтметра преобразователя 0.5 В.

Здесь встроенный вольтметр показывает напряжение только с одной значащей цифрой, и погрешность получается куда больше, аж целых 18%.

Мораль: для очень низких напряжений всё-таки лучше контролировать его установку с помощью внешнего прибора, иначе погрешность может оказаться слишком высокой.

Но главный итог состоит в том, что диапазон регулировки выходного напряжения не только уложился в заявленные пределы, но и даже перевыполнил их! [оркестр играет туш]

При этом, исходя из схемотехники и свойств микросхемы преобразователя, можно предположить, что нижняя граница диапазона регулировки напряжения всегда будет около 0.6 В, а верхняя граница будет зависеть от разброса номиналов резисторов в схеме, но в любом случае будет выше 24 В.

Читать еще:  Скворечник своими руками. Схемы, идеи и мастер-классы
Предельные режимы работы преобразователя и защита от короткого замыкания

Далее проверяем предельный отдаваемый ток преобразователя при разных выходных напряжениях. Проверка производилась только в диапазоне напряжений, официально заявленных производителем.

Проверка осуществлялась при питании от телефонного адаптера 5 Вольт / 2 Ампера; причём работоспособность адаптера при максимальном выходном тока 2 А была ранее успешно проверена.

При этой проверке возникла сложность с определением точной границы начала выхода преобразователя из режима стабилизации заданного напряжения.

Дело в том, что при превышении допустимой отдаваемой мощности защита от перегрузки и короткого замыкания в устройстве срабатывает не мгновенно, а постепенно. В связи с этим граница устойчивости режима определялась немножко «на глазок», по заметному падению напряжения выхода (более, чем на 0.1 В).

Напряжение выходаМаксимальный ток выходаМаксимальная мощность выхода
1 В1.86 А1.86 Вт
3 В1.33 А3.99 Вт
7.5 В0.65 А4.875 Вт
9 В0.62 А5.58 Вт
15 В0.33 А4.95 Вт
24 В0.17 А4.08 Вт

Приведённые здесь режимы — предельные, и длительная эксплуатация в них крайне не рекомендуется (нагрев корпуса был ощутимым).

При этой проверке выяснилось, что при установке на выходе малых напряжений и большого тока на выходе появляются колебания с частотой около 80 кГц, по форме близкие к синусу:

Здесь показана осциллограмма при выходном напряжении 1 В и токе 0.7 А; но первые признаки таких колебаний наблюдались, начиная с тока в 0.27 А.

Устраняются эти колебания, как обычно, с помощью конденсатора, подключенного к устройству снаружи, но расположить его надо близко к выходным клеммам преобразователя (оказалось достаточно 4.7 мкФ). Если этот же конденсатор установить на дальнем конце кабеля длиной 1 м (например), то колебания только слегка сглаживаются, но не устраняются.

Что касается защиты от коротких замыканий, то оптимальной её назвать нельзя. При напряжении 7.5 В ток короткого замыкания на выходе составил почти 2.5 А, а потребляемый ток — 1.55 А.

В таком режиме вся потребляемая мощность рассеивается внутри корпуса преобразователя, что опасно для его жизни и здоровья, если замыкание окажется длительным. При кратковременных замыканиях (2-3 секунды) преобразователь остаётся живым (проверено).

КПД преобразователя

КПД проверен в различных режимах работы преобразователя при мощности на выходе 3 Вт (номинал, установленный производителем). Исключение — режим с напряжением выхода 1 Вольт, в котором получить мощность выхода 3 Вт не удалось.

Напряжение выходаКПД (Pвых. = 3 Вт)
1 В44 %
3 В63 %
7.5 В77 %
9 В91 %
15 В75%
24 В74 %

КПД даже в самом благоприятном варианте не дотянул до обещанных производителем 94%.

Вероятно, причина кроется в том, что применена более сложная схема устройства, чем та, под которую рассчитана микросхема преобразователя.

Она разработана для повышающих преобразователей; а использована в повышающе-понижающем преобразователе, имеющем дополнительные элементы, и, следовательно, дополнительные источники потерь.

И, последний вопрос — о пульсациях.

Ниже приведена осциллограмма пульсаций при выходном напряжении 7.5 В и токе 0.4 А:

Размах пульсаций составил около 80 мВ, т.е. примерно 1% от величины выходного напряжения.

В большинстве случаев это — приемлемая величина; но при применении преобразователя для питания устройств, чувствительных к помехам, может потребоваться их дополнительное подавление традиционным способом — с помощью конденсаторов. Конденсаторы в таких случаях желательно использовать в комбинации «керамика + электролит» и по принципу «чем больше, тем лучше».

Итоги и выводы

Даже такое простое устройство заставило вспомнить о том, что ничего идеального в этом мире нет. 🙂

Преобразователь оказался вполне работоспособным и «пригодным к употреблению», но при его применении необходимо учитывать особенности этого устройства.

Во-первых, при работе со значительными токами и малыми напряжениями следует подключать дополнительный внешний конденсатор вблизи выходных клемм (для подавления «генерации» на 80 кГц). Большой ёмкости не требуется, достаточно от 4.7 мкФ.

Во-вторых, при работе с чувствительной аппаратурой так же может потребоваться установка дополнительных конденсаторов, подавляющих пульсации; но уже с более «серьёзной» ёмкостью.

В-третьих, надо помнить о недопустимости коротких замыканий на сколь-нибудь длительное время.

И, наконец, в-четвёртых, надо помнить и о том, что при питании преобразователя не от сетевого адаптера, а от от порта USB компьютера есть ограничения на ток, отдаваемый этими портами (500 мА для USB 2, и 900 мА для USB 3). Для примерного расчёта допустимого выходного тока преобразователя может помочь приведённая в обзоре таблица с КПД устройства при разных выходных напряжениях.

Окончательный список «плюсов» и «минусов».

Плюсы:

— широкий диапазон регулировки выходного напряжения, превосходящий заявленный производителем;

— возможность использования с кратковременным превышением допустимой выходной мощности;

— наличие встроенного вольтметра;

— возможность настройки выходного напряжения с точностью до 0.1 В;

— возможность питания от широко распространённых зарядных устройств для мобильных телефонов;

— возможность питания от USB-портов компьютеров (с ограничениями по мощности);

— приятный внешний вид, малые габариты и вес.

Минусы:

— малая эффективность защиты от коротких замыканий;

— необходимость дополнительных конденсаторов для подавления помех (особенно — при малых напряжениях и высоких токах);

— КПД ниже заявленного производителем.

Приобрести этот преобразователь можно на Алиэкспресс проверить актуальную цену или купить.

Читать еще:  Трактор самоделкина из старой швейной машинки своими руками

Схема простого повышающего преобразователя DC-DC с использованием микросхемы таймера 555

В этом проекте мы будем создавать схему повышающего преобразователя с использованием микросхемы таймера 555. Повышающий преобразователь — это не изолированный импульсный источник питания, который используется для повышения напряжения. Другими словами, это дает более высокое выходное напряжение по сравнению с входным.

Схема очень похожа на понижающий конвертерhttps://circuitdigest.com/electronic-circuits/simple-555-timer-based-buck-regulator-circuit-for-led-dimmers-and-dc-motor-speed-control, который мы разработали для управления двигателем и светодиодной лентой, которая предназначается для понижения входящего напряжения. Повышающие преобразователи находят применение во многих типах нашего бытового оборудования. Это очень распространенные схемы силовой электроники, которые широко используются с солнечными панелями и другими технологиями, и являются одной из самых важных схем в настоящее время.

В этой статье мы узнаем о понижающих преобразователях и спроектируем очень простой повышающий инвертор с использованием таймера 555 и IRFZ44N, N-канального МОП-транзистора.

Работа повышающего преобразователя DC-DC

Повышающий преобразователь используется для увеличения выходного напряжения благодаря уменьшению тока, это достигается за счет сохранения энергии в катушке индуктивности, и, поскольку энергия в дросселе не может изменяться мгновенно, она начинает накапливать энергию в своем магнитном поле.

Ток протекающий через катушку индуктивности (дроссель) определяется выражением I, и, поскольку сопротивление и ток постоянны, единственное значение, которое может измениться, — это напряжение. Как показано на рисунке ниже, дроссель соединен последовательно с источником напряжения для постоянного включения и выключения цепи.

Переключатель подключен параллельно источнику напряжения и катушке индуктивности для достижения быстрого переключения. Мы здесь используем полевой МОП-транзистор вместе с драйвером полевого МОП-транзистора. Схема подключена к нагрузке и параллельно ей конденсатор. Чтобы ограничить обратный ток от конденсатора, между емкостью и полевым МОП-транзистором используется диод.

Катушка индуктивности пытается противостоять изменению тока, чтобы обеспечить постоянный входной ток, и, следовательно, повышающий инвертор действует как источник входного постоянного тока, в то время как нагрузка действует как источник постоянного напряжения. Эта схема очень похожа на понижающий преобразователь и иногда называется обратным понижающим инвертором.

N-канальный полевой МОП-транзистор управляется ШИМ-сигналом, здесь мы использовали таймер IC 555 для обеспечения вывода на полевой МОП-транзистор. Конденсатор используется для хранения заряда и обеспечения постоянной выходной мощности нагрузки. Схема работает в 2 этапа, на 1 ступени переключатель включен, а на 2 ступени переключатель находится в выключенном состоянии.

Этап 1: Включен: режим зарядки

В этом состоянии переключатель MOSFET включен. Используемый нами полевой МОП-транзистор представляет собой N-канальный полевой МОП-транзистор IRFZ44N, вывод затвора подключен к выводу 3 таймера IC555. Когда переключатель находится в состоянии ВКЛ, он замыкает цепь через катушку индуктивности, и на нее подается напряжение, в результате чего вокруг него создается магнитное поле. Поскольку он предлагает путь с очень низким сопротивлением, все напряжение проходит через переключатель и возвращается к источнику питания, как отмечено красной линией на рисунке ниже.

Конденсатор, который был ранее заряжен на последнем этапе, пытается разрядиться через полевой МОП-транзистор, и чтобы остановить его, мы используем диод, для того чтоб прекратить заряд конденсатора, протекающий в обратном направлении.

Этап 2: выключатель выключен: режим разряда

Когда переключатель находится в выключенном состоянии, путь зарядки индуктора не завершается, следовательно, полярность индуктора меняется на обратную, и магнитное поле вокруг него схлопывается, в результате генерируется скачок напряжения, который проходит через диод и заряжает конденсатор. Суммарная энергия от катушки индуктивности и источника используется для зарядки конденсатора, а также проходит через нагрузку.

Рабочий цикл:

Общее время цикла переключения называется периодом времени (T), время включения и время выключения переключателя задается как Ton и Toff соответственно. Следовательно:

Частота (f) определяется как

Рабочий цикл (D) определяется как общее время, в течение которого переключатель находится во включенном состоянии, по отношению к общему периоду времени. Продолжительность включения определяется по формуле:

Используя закон напряжения Кирхгофа, мы можем получить установившееся состояние повышающего преобразователя. Здесь мы будем считать, что схема является идеальной, и в течение всего процесса не теряется мощность, а именно:

Теоретически за один полный цикл чистое изменение тока катушки индуктивности равно нулю, а отношение входного напряжения Vin к выходному напряжению (Vout) определяется как:

Расчетное значение индуктора:

Мы знаем, что средний входной ток (Iavg) равен среднему току индуктора (ILavg). Следовательно, средний ток катушки индуктивности можно рассчитать следующим образом:

Пульсации индуктора обычно составляют 20-40% от среднего выходного тока.

Расчет зарядного конденсатора:

Расчет времени заряда конденсатора Tc = R*C

Здесь R — сопротивление цепи зарядки, а C — емкость конденсатора. В нашей схеме, представленной ниже, цепь зарядки следует по пути, отмеченному красным, то есть R3> D2> C2.

Чтобы рассчитать номиналы входного резистора и конденсатора, вы также можете использовать этот онлайн-калькулятор.

Расчет выходного конденсатора:

Выбор компонентов

Я разработал схему на Eschema, KiCad и выполнил расчет необходимых компонентов, используя приведенные выше формулы. Затем сделал схему на макетной плате. Принципиальная схема, разработанная в KiCad, приведена ниже.

Необходимые компоненты:

  • 1 х NE555
  • 1 x IRFZ44N — N-канальный полевой МОП-транзистор
  • 1 x 100 мкГн, индуктор
  • 1 х 1 кОм, резистор
  • 2 диода IN4001
  • 1 х IN5822 диод
  • 1 x 100 нФ, конденсатор
  • 1 х 1 нФ конденсатор
  • 1 потенциометр 50 кОм
  • 2 x 2-контактный разъем (для подключения входа и выхода схемы)

Что следует помнить при выборе компонента:

MOSFET : вам нужно выбрать MOSFET, который сможет выдерживать максимальное выходное напряжение, поэтому его напряжение пробоя должно быть выше, чем максимальная мощность преобразователя

Диод : Для операций с низким напряжением я использовал IN5822, потому что низкая скорость IN4007 делает его непригодным для наших операций. Нам нужно выбрать быстрый диод, я попытался использовать диод IN4007 в качестве выходного диода, но из-за проблем с производительностью я переключился на более быстрый IN5822.

Как работает схема повышающего преобразователя

В схеме используется микросхема IC 555 в нестабильном режиме в качестве генератора ШИМ, и, следовательно, вся схема построена примерно так же. Подключения всех 8 контактов указаны ниже:

  • Контакт 1 подключен к шине заземления.
  • Контакты 2 и 6 с заземлением через конденсатор емкостью 1 нФ.
  • Контакт 3 выдает выходной сигнал и, таким образом, подключен к затвору N-канального МОП-транзистора IRFZ44N. Этот вывод отвечает за управление выходом ШИМ на затвор полевого МОП-транзистора.
  • Контакт 4 необходимо подключить к источнику питания
  • Контакт 5 помогает стабилизировать выход, поэтому он подключен к земле через конденсатор емкостью 0,01 мкФ. Это также помогает обеспечить невосприимчивость к электрическим помехам.
  • Вывод 7 подключен к инвертированной диодной установке; переход подключен к положительной шине через резистор 1 кОм.
  • Контакт 8 необходимо подключить к источнику питания.
Читать еще:  Простая точилка для бритвы своими руками

Основным компонентом любого SMPS является переключатель, здесь в этой схеме мы используем N-канальный MOSFET IRFZ44N в качестве переключателя. Он управляется слабым сигналом от IC 555, поэтому логический элемент IRFZ44N подключен к IC 555. Сток обеспечивает отрицательное переключение цепи, а источник заземлен. Он имеет следующую спецификацию:

RDS (вкл.) = 17,5 мОм

Тестирование схемы повышающего преобразователя Dc Dc на основе таймера 555

Я тестировал схему с литий-ионным аккумулятором 3,7 В, аккумулятор был заряжен примерно до 3,4 В. Я подключил элемент к повышающему преобразователю, и напряжение на нем показало 7,5 В. Изображение выхода на выходе повышающего преобразователя показано ниже.

Чтобы проверить ток, я заменил провод мультиметра на токовый щуп (не забудьте выбрать диапазон 10 А или 20 А на вашем мультиметре, чтобы защитить его от повреждения). Ток показывал 3,2 А, таким образом, эта схема способна производить около 30 Вт. Схема работала правильно и смогла повысить напряжение.

Отсутствие обратной связи приводит к падению напряжения в цепи при подключении нагрузки. Обратная связь, используемая повышающими преобразователями, гарантирует, что рабочий цикл остается стабильным даже при подключенной нагрузке. Мы можем легко обеспечить обратную связь, используя микроконтроллер для измерения измененного выходного сигнала, а затем изменять входное сопротивление, что делает эту схему более полезной и практичной для большинства операций.

Это очень простая, но эффективная схема, которую можно использовать, если вам будет нужно более высокое напряжение, чем может обеспечить ваш источник напряжения, при одновременном снижении потерь мощности в вашей цепи. Эта схема была способна выдавать мощность более 30 Вт. Хотя для создания схемы рекомендуется использовать хотя бы перфокарту, так как обычные макетные платы предназначены для маломощных приложений.

Если вам нужен постоянный выход, вы должны использовать постоянный резистор вместо потенциометра, чтобы повысить общую эффективность конструкции. Основным недостатком этой схемы является то, что из-за отсутствия обратной связи падение напряжения при подключении нагрузки довольно велико.

И последнее: создавать схему, которая может быть спроектирована из простых компонентов, лежащих на нашем рабочем столе, — это весело.

Повышающий преобразователь напряжения на на таймере 555

Проект.

В качестве корпуса для самодельного преобразователя напряжения я решил использовать корпус от отслужившей свой срок батареи «Крона». Такая конструкция, на мой взгляд, более универсальна, да и в мультиметр DT-830B, всё равно, ничего большего размера, чем «Крона», не помещается.

Прорисовка предполагаемой конструкции показала, что пальчиковый аккумулятор форм-фактора «ААА» можно разместить в корпусе от батареи с минимальным увеличением размера последнего.

А именно. Увеличить длину корпуса можно за счёт выпрямления одного из развальцованных краёв жестяной обечайки.

Заднюю стенку, при этом, пришлось немного наклонить, чтобы гайка крепления гнезда не увеличила габариты корпуса.

Универсальный Dc Dc преобразователь – SEPIC

SEPIC (single-ended primary-inductor converter) или преобразователь с несимметрично нагруженной первичной индуктивностью.

Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.

Функциональная схема преобразователя SEPIC

Очень похожа на схему повышающего преобразователя, показанного на предыдущем рисунке, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.

Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке ниже.

Принципиальная схема преобразователя SEPIC

Ниже показан внешний вид платы с обозначением основных элементов.

Внешний вид преобразователя SEPIC

Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC.

Входное напряжение платы может быть в пределах 4…35 В. При этом выходное напряжение может настраиваться в пределах 1,23…32 В. Рабочая частота преобразователя 500 КГц. При незначительных размерах 50 x 25 x 12 мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3 А.

Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10 В, то выходной ток не может быть выше 2,5 А (25 Вт). При выходном напряжении 5 В и максимальном токе 3 А мощность составит всего 15 Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйти за пределы допустимого тока.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector